Nonholonomic constraints with fractional derivatives
نویسندگان
چکیده
We consider the fractional generalization of nonholonomic constraints defined by equations with fractional derivatives and provide some examples. The corresponding equations of motion are derived using variational principle. We prove that fractional constraints can be used to describe the evolution of dynamical systems in which some coordinates and velocities are related to velocities through a power-law memory function. PACS numbers: 45.20.−d, 45.50.−j, 45.20.Jj, 45.10.Hj, 02.70.Ns Mathematics Subject Classification: 26A33, 70H03, 70H05, 70H25
منابع مشابه
Fractional Dynamics of Relativistic Particle
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in fourdimensional space-time represents the relativistic inv...
متن کاملمسیریابی حرکت روباتهای ماشینواره با روش پیشروی سریع
The Robot Motion Planning (RMP) problem deals with finding a collision-free start-to-goal path for a robot navigating among workspace obstacles. Such a problem is also encountered in path planning of intelligent vehicles and Automatic Guided Vehicles (AGVs). In terms of kinematic constraints, the RMP problem can be categorized into two groups of Holonomic and Nonholonomic problems. In the first...
متن کاملLaplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کاملOn Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives
In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.
متن کاملA study of a Stefan problem governed with space–time fractional derivatives
This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...
متن کامل